2,403 research outputs found

    The Mineral Industry of Nebraska

    Get PDF

    Instantaneous Normal Mode analysis of liquid HF

    Full text link
    We present an Instantaneous Normal Modes analysis of liquid HF aimed to clarify the origin of peculiar dynamical properties which are supposed to stem from the arrangement of molecules in linear hydrogen-bonded network. The present study shows that this approach is an unique tool for the understanding of the spectral features revealed in the analysis of both single molecule and collective quantities. For the system under investigation we demonstrate the relevance of hydrogen-bonding ``stretching'' and fast librational motion in the interpretation of these features.Comment: REVTeX, 7 pages, 5 eps figures included. Minor changes in the text and in a figure. Accepted for publication in Phys. Rev. Let

    Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model

    Full text link
    It is shown that the fraction f of imaginary frequency instantaneous normal modes (INM) may be defined and calculated in a random energy model(REM) of liquids. The configurational entropy S and the averaged hopping rate among the states R are also obtained and related to f, with the results R~f and S=a+b*ln(f). The proportionality between R and f is the basis of existing INM theories of diffusion, so the REM further confirms their validity. A link to S opens new avenues for introducing INM into dynamical theories. Liquid 'states' are usually defined by assigning a configuration to the minimum to which it will drain, but the REM naturally treats saddle-barriers on the same footing as minima, which may be a better mapping of the continuum of configurations to discrete states. Requirements of a detailed REM description of liquids are discussed

    Early-Stage Thinning for the Restoration of Young Redwood--Douglas-Fir Forests in Northern Coastal California, USA

    Get PDF
    Among forested parks and reserves of the Pacific Coast of the United States, the restoration of late-successional conditions to second-growth stands is a management priority. Some traditional silvicultural treatments may help achieve this objective. We evaluated early-stage thinning as a restoration treatment to facilitate the growth and development of young (33- to 45-year old), homogeneous, and second-growth stands of coast redwood (Sequoia sempervirens) and Douglas-fir (Pseudotsuga menziesii). Targeting both stand-level responses and dominant (focal) tree responses for analysis, we compared structural attributes of adjacent thinned and unthinned stands, 12–17 years after thinning. Thinned stands displayed enhanced metrics of tree vigor, growth, and mechanical stability, thereby improving response to future restoration treatments and broadening the range of potential stand conditions. We conclude that early-stage thinning has been successful as a preliminary restoration treatment because it accomplished many initial goals of forest restoration, while retaining sufficient tree numbers to buffer against possible attrition from future disturbances

    Potential energy landscape-based extended van der Waals equation

    Full text link
    The inherent structures ({\it IS}) are the local minima of the potential energy surface or landscape, U(r)U({\bf r}), of an {\it N} atom system. Stillinger has given an exact {\it IS} formulation of thermodynamics. Here the implications for the equation of state are investigated. It is shown that the van der Waals ({\it vdW}) equation, with density-dependent aa and bb coefficients, holds on the high-temperature plateau of the averaged {\it IS} energy. However, an additional ``landscape'' contribution to the pressure is found at lower TT. The resulting extended {\it vdW} equation, unlike the original, is capable of yielding a water-like density anomaly, flat isotherms in the coexistence region {\it vs} {\it vdW} loops, and several other desirable features. The plateau energy, the width of the distribution of {\it IS}, and the ``top of the landscape'' temperature are simulated over a broad reduced density range, 2.0ρ0.202.0 \ge \rho \ge 0.20, in the Lennard-Jones fluid. Fits to the data yield an explicit equation of state, which is argued to be useful at high density; it nevertheless reproduces the known values of aa and bb at the critical point

    Instantaneous Normal Mode Analysis of Supercooled Water

    Full text link
    We use the instantaneous normal mode approach to provide a description of the local curvature of the potential energy surface of a model for water. We focus on the region of the phase diagram in which the dynamics may be described by the mode-coupling theory. We find, surprisingly, that the diffusion constant depends mainly on the fraction of directions in configuration space connecting different local minima, supporting the conjecture that the dynamics are controlled by the geometric properties of configuration space. Furthermore, we find an unexpected relation between the number of basins accessed in equilibrium and the connectivity between them.Comment: 5 pages, 4 figure

    Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility

    Full text link
    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal of Instrumentation (JINST), including corrected Fig. 8b

    Saddles in the energy landscape probed by supercooled liquids

    Full text link
    We numerically investigate the supercooled dynamics of two simple model liquids exploiting the partition of the multi-dimension configuration space in basins of attraction of the stationary points (inherent saddles) of the potential energy surface. We find that the inherent saddles order and potential energy are well defined functions of the temperature T. Moreover, decreasing T, the saddle order vanishes at the same temperature (T_MCT) where the inverse diffusivity appears to diverge as a power law. This allows a topological interpretation of T_MCT: it marks the transition from a dynamics between basins of saddles (T>T_MCT) to a dynamics between basins of minima (T<T_MCT).Comment: 4 pages, 3 figures, to be published on PR

    Analytic computation of the Instantaneous Normal Modes spectrum in low density liquids

    Full text link
    We analytically compute the spectrum of the Hessian of the Hamiltonian for a system of N particles interacting via a purely repulsive potential in one dimension. Our approach is valid in the low density regime, where we compute the exact spectrum also in the localized sector. We finally perform a numerical analysis of the localization properties of the eigenfunctions.Comment: 4 RevTeX pages, 4 EPS figures. Revised version to appear on Phys. Rev. Let
    corecore